Advancing Computational Cancer Phenotyping: A Comparative Study of Structured-Only Unsupervised Methods vs. Multimodal RAG Hosted and Local Pipelines

Victor M. Castro, MS¹, Martin J. Rees¹, Nich Wattanasin, MS¹, Vivian S. Gainer, MS¹, Shawn N. Murphy, MD, PhD¹ ¹Research Information Science and Computing, Mass General Brigham, Somerville, MA, USA

Introduction

- Computational phenotyping (CP) underpins large-scale observational studies in EHR data.
- Most CP algorithms operate on structured EHR data with limited information
- RAG-based LLM pipelines can incorporate clinical text to augment CP algorithms.

Methods

- All clinical notes for each patient were embedded using either a local open-source model (MedEmbed-largev0.1) or a proprietary model (OpenAl text-embedding-3large).
- We deployed GPT-4o as a hosted proprietary model through Azure OpenAl services, while Qwen3-8B was run as an open-source model locally.
- As a structured-only baseline, we implemented the KOMAP algorithm (Xiong, 2023).

- A licensed clinical nurse performed manual chart review for a 50-patient subset to determine the presence or absence of melanoma.
- These adjudications served as the gold standard for assessing sensitivity, positive predictive value (PPV), negative predictive value (NPV), and overall agreement.

Results

Method	Data Modality	Model Setup	Comparison to Clinician Chart Review (N=50)				
			Agreement	Cohen's ĸ	Sensitivity	PPV	NPV
KOMAP	Structured EHR only	Unsupervised modeling	0.792	0.271	0.946	0.814	0.600
Local embedding / OpenAI LLM	Notes (embeddings)	MedEmbed-large-v0.1 + GPT-4o (hosted)	0.960	0.875	1.000	0.951	1.000
OpenAI embedding / OpenAI LLM	Notes (embeddings)	text-embedding-3-large + GPT-4o (hosted)	0.900	0.718	0.923	0.947	0.750
Local embeddings / Local LLM	Notes (embeddings)	MedEmbed-large-v0.1 + Qwen3-8B (local)	0.920	0.794	0.897	1.000	0.733

Conclusions

- RAG LLM pipelines consistently outperform structured-only unsupervised methods for melanoma case identification.
- Local MedEmbed+Qwen3-8B configuration achieved performance comparable to GPT-40, supporting the feasibility of privacypreserving, institutioncontrolled deployments.

